The first week after concussion: Blood flow, brain function and white matter microstructure
نویسندگان
چکیده
Concussion is a major health concern, associated with short-term deficits in physical function, emotion and cognition, along with negative long-term health outcomes. However, we remain in the early stages of characterizing MRI markers of concussion, particularly during the first week post-injury when symptoms are most severe. In this study, 52 varsity athletes were scanned using Magnetic Resonance Imaging (MRI), including 26 athletes with acute concussion (scanned 1-7 days post-injury) and 26 matched control athletes. A comprehensive set of functional and structural MRI measures were analyzed, including cerebral blood flow (CBF) and global functional connectivity (Gconn) of grey matter, along with fractional anisotropy (FA) and mean diffusivity (MD) of white matter. An analysis comparing acutely concussed athletes and controls showed limited evidence for reliable mean effects of acute concussion, with only MD showing spatially extensive differences between groups. We subsequently demonstrated that the number of days post-injury explained a significant proportion of inter-subject variability in MRI markers of acutely concussed athletes. Athletes scanned at early acute injury (1-3 days) had elevated CBF and Gconn and reduced FA, but those scanned at late acute injury (5-7 days) had the opposite response. In contrast, MD showed a more complex, spatially-dependent relationship with days post-injury. These novel findings highlight the variability of MRI markers during the acute phase of concussion and the critical importance of considering the acute injury time interval, which has significant implications for studies relating acute MRI data to concussion outcomes.
منابع مشابه
Hockey Concussion Education Project, Part 3. White matter microstructure in ice hockey players with a history of concussion: a diffusion tensor imaging study.
OBJECT The aim of this study was to examine the brain's white matter microstructure by using MR diffusion tensor imaging (DTI) in ice hockey players with a history of clinically symptomatic concussion compared with players without a history of concussion. METHODS Sixteen players with a history of concussion (concussed group; mean age 21.7 ± 1.5 years; 6 female) and 18 players without a histor...
متن کاملHyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients
Background: Recent clinical studies in stroke and traumatic brain injury (TBI) victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT) can induce neuroplasticity. Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS) due to TBI, using brain microstructure imaging. Methods: Fifteen patients afflicted wit...
متن کاملEffects of Career Duration, Concussion History, and Playing Position on White Matter Microstructure and Functional Neural Recruitment in Former College and Professional Football Athletes.
Purpose To better understand the relationship between exposure to concussive and subconcussive head impacts, white matter integrity, and functional task-related neural activity in former U.S. football athletes. Materials and Methods Between 2011 and 2013, 61 cognitively unimpaired former collegiate and professional football players (age range, 52-65 years) provided informed consent to participa...
متن کاملA phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder: a neuropsychiatric perspective.
This is a preliminary report on the safety and efficacy of 1.5 ATA hyperbaric oxygen therapy (HBOT) in military subjects with chronic blast-induced mild to moderate traumatic brain injury (TBI)/post-concussion syndrome (PCS) and post-traumatic stress disorder (PTSD). Sixteen military subjects received 40 1.5 ATA/60 min HBOT sessions in 30 days. Symptoms, physical and neurological exams, SPECT b...
متن کاملMicrostructure and Cerebral Blood Flow within White Matter of the Human Brain: A TBSS Analysis
BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiol...
متن کامل